
On the transformation of series *

Leonhard Euler

§1 Since it is propounded to us to show the use of differential calculus, both
in the whole field of analysis and in the doctrine of series, several auxiliary
tools from common algebra which are usually are not discussed will have
to be covered here. Although we have already covered a huge part in the
Introductio, some things were nevertheless left aside there, either on purpose,
because it is convenient to explain them just then when they are actually
needed, or because all the things which will be necessary could not have
been foreseen at that point. This concerns the transformation of series we
devote this chapter to and by means of which a given series is transformed
into innumerable others such that, if the sum of the propounded series is
known, the resulting ones can all be summed at the same time. Indeed, having
discussed this subject in advance, we will be able to develop the doctrine of
series even further by means of differential and integral calculus.

§2 But we will mainly consider series whose terms are multiplied by succes-
sive powers of a certain variable quantity, since these extend further and are
of greater utility.

Therefore, let the following general series be propounded, whose sum, either
known or not, we want to put = S, and let

S = ax + bx2 + cx3 + dx4 + ex5 + etc.

*Original title: “ De Transformatione serierum“, first published as part of the book “Institutio-
nes calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum“, 1755, reprinted
in Opera Omnia: Series 1, Volume 10, pp. 217 - 234, Eneström-Number E212, translated by:
Alexander Aycock for the project „Euler-Kreis Mainz“
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Now, put x = y
1+y and because by an infinite series

x = y − y2 + y3 − y4 + y5 − y6 + etc.

x2 = y2 − 2y3 + 3y4 − 4y5 + 5y6 − 6y7 + etc.

x3 = y3 − 3y4 + 6y5 − 10y6 + 15y7 − 21y8 + etc.

x4 = y4 − 4y4 + 10y6 − 20y7 + 35y8 − 35y8 + etc.

etc.,

these values, having substituted them and having arranged the series accor-
ding to powers of y, will give

S = ay − ay2 + ay3 − ay4 + ay5 etc.
+ b − 2b + 3b − 4b

+ c − 3c + 6c
+ d − 3d

+ e

§3 Since we put x = y
1+y , it will be y = x

1−x ; having substituted this value
for y, the propounded series

S = ax + bx2 + cx3 + dx4 + ex5 + etc.

will be transformed into this one:

S = a
x

1− x
+ (b− a)

x2

(1− x)2 + (c− 2b + a)
x3

(1− x)3 + etc.,

in which the coefficient of the second term b− a is the first difference of a
from the series a, b, c, d, e etc., which difference we denoted by ∆a above;
the coefficient of the third term c− 2b + a is the second difference ∆2a; the
coefficient of the fourth term is the third difference of ∆3a etc. Therefore, using
the iterated differences of a which are formed from the series a, b, c, d, e etc.,
the transformed series will go over into this one

S =
x

1− x
a +

x2

(1− x)2 ∆a +
x3

(1− x)3 ∆2a +
x4

(1− x)4 ∆3a + etc.,

the sum of which series is therefore known, if the sum of the propounded
series was known.
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§4 Therefore, if the series a, b, c, d etc. was of such a nature that it finally leads
to constant differences, what happens, if its general term was a polynomial,
the series x

1−x a + x2

(1−x)2 ∆a+etc. will have terms vanishing eventually and
hence its sum can be exhibited by a finite expression. Therefore, if the first
differences of the series a, b, c, d etc. were already constant, the sum of this
series ax + bx2 + cx3 + dx4 + etc. will be

=
x

1− x
a +

x2

(1− x)2 ∆a.

But if just the second differences of the coefficients of that series become
constant, the sum of the propounded series will be

=
x

1− x
a +

x2

(1− x)2 ∆a +
x3

(1− x)3 ∆∆a.

Therefore, the sums of series of this kind are easily found from the differences
of the coefficients.

I. Let the sum of this series be in question

1x + 3x2 + 5x3 + 7x4 + 9x5 + etc.,

Diff. I 2, 2, 2, 2 etc.

Therefore, since the first differences are constant, because of a = 1 and ∆a = 2,
the sum of the propounded series will be

=
x

1− x
+

2xx
(1− x)2 =

x + xx
(1− x)2 .

II. Let the sum of this series be in question

1x + 4xx + 9x3 + 16x4 + 25x5 + etc.

Diff. I 3, 5, 7, 9, etc.

Diff. II 2 2 2 etc.

Therefore, since a = 1, ∆a = 3, ∆2a = 2, the sum of the propounded series
will be
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=
x

1− x
+

3xx
(1− x)2 +

2x3

(1− x)3 =
x + xx
(1− x)3 .

III. Let the sum of this series be in question

S = 4x + 15x2 + 40x3 + 85x4 + 156x5 + 259x6 + etc.

Diff. I 11, 25, 45, 71, 103 etc.

Diff. II 14, 20, 26, 32, etc.

Diff. III 6, 6, 6, etc.

Because a = 4, ∆a = 11, ∆2a = 14, ∆3a = 6, the sum will be

S =
4x

1− x
+

11xx
(1− x)2 +

14x3

(1− x)3 +
6x4

(1− x)4

or

S =
4x− xx + 4x3 − x4

(1− x)4 =
x(1 + xx)(4− x)

(1− x)4 .

§5 Although this way the sums of these infinite series are found, nevertheless
using the same principles the finite counterparts of these series, i.e. series
consisting of a finite number of terms, can be summed. For, let this series be
propounded

S = ax + bx2 + cx3 + dx4 + · · · · · ·+ oxn,

and first let its sum be in question, if the series actually an infinite series; then
the sum will be

=
x

1− x
a +

x2

(1− x)2 ∆a +
x3

(1− x)3 ∆2a + etc.

Now consider the terms of the same series following after the last oxn which
we want to put

pxn+1 + qxn+2 + rxn+3 + sxn+4 + etc.;
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the sum of this series, if divided by xn, can be found as before; this sum,
multiplied by xn again, will be

xn+1

1− x
p +

xn+2

(1− x)2 ∆p +
xn+3

(1− x)3 ∆2 p + etc.;

if the sum of this series is subtracted from the sum of the infinite series, the
sum of the propounded portion in question will remain, i.e.

S =
x

1− x
(a− xp) +

x2

(1− x)2 (∆a− xn∆p) +
x3

(1− x)3 (∆
2a− xn∆2 p) + etc.

I. Let the sum of this finite series be in question

S = 1x + 2x2 + 3x3 + 4x4 + · · ·+ nxn.

Find the differences so of these coefficients as of the ones following the last
term

1, 2, 3, 4, etc.

1, 1, 1, etc.

n + 1, n + 2, n + 3, etc.

1, 1, etc.

and it will be a = 1, ∆a = 1, p = n + 1, ∆p = 1, whence the sum in question is

s =
x

1− x
(1− (n + 1)xn) +

x2

(1− x)2 (1− xn)

or

S =
x− (n + 1)xn+1 + nxn+2

(1− x)2 .

II. Let the sum of this finite series be in question

S = 1 + x + 4x + 9x3 + 16x4 + · · · · · ·+ n2xn.

At first, investigate the differences this way

1, 4, 9, 16, etc.

3, 5, 7, etc.

2, 2, etc.

(n + 1)2, (n + 2)2, (n + 3)2, etc.

2n + 3, 2n + 5, etc.

2, etc.
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having found which, the sum in question will be

S =
x

1− x
(1− (n + 1)2xn) +

x2

(1− x)2 (3− (2n + 3)xn) +
x3

(1− x)3 (2− 2xn)

or

S =
x + xx− (n + 1)2xn+1 + (2nn + 2n− 1)xn+2 − nnxn+3

(1− x)3 .

§6 But if the propounded series does not have coefficients which are finally
reduced to constant differences, the transformation exhibited here is not of any
use to determine its sum. Furthermore, the sum can not even be approximated
in a more convenient way applying said transformation than it is possible by
actual addition of the terms of the propounded series itself. For, if in the series
ax + bx2 + cx3 + dx4 + etc. it was x < 1, in which case only the summation, in
the sense explained above, is actually possible, it will be x

1−x > x and hence
the new series converges less than the initial one. But if in the propounded
series it was x = 1, all terms of the new series even become infinite, in which
case this transformation will therefore be completely useless.

§7 Let us consider the series in which the signs + and − alternate and which
will be deduced from the preceding by assuming x to be negative. Therefore,
if it was

S = ax− bx2 + cx3 − dx4 + ex5 − etc.,

the negative of which series results, if in the preceding series one takes a
negative x, as before, let us take the differences ∆a, ∆2a, ∆3a etc. of the series
of coefficients a, b, c, d, e etc., having attributed the signs to the powers of x,
and the propounded series will be transformed into this one

S =
x

1 + x
a− x2

(1 + x)2 ∆a +
x3

(1 + x)3 ∆2a− x4

(1 + x)4 ∆3a + etc.,

whence it is seen that the propounded series can be summed in the same cases
as the preceding one, of course, if the series a, b, c, d etc. has finally constant
iterated differences.
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§8 But in this case, this transformation yields a convenient approximation
of the value of the propounded series ax− bx2 + cx3 − dx4 + ex5 − f x6 + etc.;
for, no matter how large the number x is, the fraction x

1+x , in powers of which
the other series is expanded, becomes smaller than 1; and if x = 1, it will be

x
1+x = 1

2 . But if x < 1, say x = 1
n , it will be x

1+x = 1
n+1 and hence the series

found by means of the transformation will always converge more rapidly than
the initial one. Let us especially consider the case, in which x = 1, which is
especially useful for the summation of series, and let

S = a− b + c− d + e− f + etc.,

and denote the first, second and following differences of a, which the progres-
sion a, b, c, d, e etc. yields, by ∆a, ∆2a, ∆3a etc.; having found these, it will
be

S =
1
2

a− 1
4

∆a +
1
8

∆2a− 1
16

∆3a + etc.,

which series, if it does not actually terminate, exhibits the approximate sum
conveniently.

§9 Therefore, let us show the use of this last transformation, in which we
took x = 1, in some examples and at first certainly in examples in which the
true sum can be expressed finitely. Such series are divergent series, in which
the numbers a, b, c, d etc. finally lead to constant differences; since the sums
of these series can not be exhibited in the usual sense of the word sum, we
understand the word sum here in this sense we gave it above [§ 111 of the
first part], such that the word sum means the value of the finite expression,
from whose the expansion the propounded series results.

I. Therefore, let this series due to Leibniz be propounded

S = 1− 1 + 1− 1 + 1− 1 + etc.;

because in this series all terms are equal, all differences will become = 0 and
hence, because of a = 1, it will be S = 1

2 .

II. Let this series be propounded, i.e.
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S = 1− 2 + 3− 4 + 5− 6 + etc.

Diff. I 1, 1, 1, 1, 1 etc.

Therefore, because a = 1, ∆a = 1, it will be S = 1
2 −

1
4 = 1

4 .

III. Let this series be propounded

S = 1− 3 + 5− 7 + 9− etc.

Diff. II 2, 2, 2, 2, etc.

Because of a = 1 and ∆a = 2, we have S = 1
2 −

2
4 = 0.

IV. Let this series of the triangular numbers be propounded, i.e.

1− 3 + 6− 10 + 15− 21 + etc.

Diff. I 2, 3, 4, 5, 6, etc.

Diff. II 1 1, 1, 1 etc.

Here, because of a = 1, ∆a = 2 and ∆∆a = 1, it will be S = 1
2 −

2
4 +

1
8 = 1

8 .

V. Let the series of the squares be propounded, i.e.

S = 1− 4 + 9− 16 + 25− 36 + etc.

Diff. I 3, 5, 7, 9, 11, etc.

Diff. II 2 2, 2, 2 etc.

Because of a = 1, ∆a = 3, ∆∆a = 2 it will be S = 1
2 −

3
4 +

2
8 = 0.

VI. Let this series of the fourth powers be propounded, i.e.

S = 1− 16 + 81− 256 + 625− 1296 + etc.
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Diff. I 15, 65, 175, 175, 369, 671, etc.

Diff. II 50, 110, 194, 302, etc.

Diff. III 60, 84, 108, etc.

Diff. IV 24, 24, etc.

Therefore, it will be S = 1
2 −

15
4 + 50

8 −
60
16 +

24
32 = 0.

§10 If the series diverges more rapidly, as the geometric series and other
similar ones, applying the transformation it is immediately transformed into a
series converging more, which, if it did not already converge quickly enough,
in like manner will be converted into another converging more rapidly.

I. Let this geometric series be propounded

s = 1− 2 + 4− 8 + 16− 32 + etc.

Diff. I 1, 2, 4, 8, 16, etc.

Diff. II 1, 2, 4, 8, etc.

Diff. III 1, 2, 4, etc.

Therefore, because in all these differences the first term is = 1, the sum of the
series will be expressed this way

S =
1
2
− 1

4
+

1
8
− 1

16
+

1
32
− 1

64
+ etc.,

the sum of which series is = 1
3 ; for, it results from the expansion of the fraction

1
2+1 , whereas the propounded series results from 1

1+2 .

II. Let this recurring series be propounded

S = 1− 2 + 5− 12 + 29− 70 + 169− etc.
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Diff. I 1, 3, 7, 17, 41, 99, etc.

Diff. II 2, 4, 10, 24, 58, etc.

Diff. III 2, 6, 14, 34, etc.

Diff. IV 4, 8, 20, etc.

Diff. V 4, 12, etc.

Diff. VI 8, etc.

etc.

Therefore, the first terms of the continued differences constitute this double
geometric series 1, 1, 2, 2, 4, 4, 8, 8, 16, 16 etc., whence it will be

S =
1
2
− 1

4
+

2
8
− 2

16
+

4
32
− 4

64
+

8
128
− etc.;

therefore, because, except for the first, each two terms cancel each other, it will
be S = 1

2 . Indeed, the propounded series results from the expansion of the
fraction 1

1+2−1 = 1
2 , as we showed in the discussion of the nature of recurring

series.

III. Let the hypergeometric series be propounded, i.e.

S = 1− 2 + 6− 24 + 120− 720 + 5040− etc.,

whose continued differences we will investigate more conveniently this way:

Diff. I Diff. II Diff. III

1 1 3 11

2 4 14 64

6 18 78 426

24 96 504 3216

120 600 3720 27240 etc.

720 4320 30960 256320

5040 35280 287280 2656080

40320 322560 2943360

362880 3265920

3628800
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Having continued these differences further, it will be

S =
1
2
− 1

4
+

3
8
− 11

16
+

53
32
− 309

64
+

2119
128
− 16687

256
+

148329
512

− 1468457
1024

+
16019531

2048
− 190899411

4096
+ etc.

Collect the two initial terms and it will be S = 1
4 + A, where

A =
3
8
− 11

16
+

53
32
− 309

64
+

2119
128
− etc.

If now in the same way the differences are taken, it will be

A =
3
24 −

5
26 +

21
28 −

99
210 +

615
212 −

4401
214 +

36585
216 −

342207
218

+
3565323

220 − 40866525
222 + etc.

Collect the two initial terms, because they converge, and it will be A = 7
26 + B

while B = 21
28 − 99

210 + etc.; taking the differences of this series again, it will be

B =
21
29 −

15
212 +

159
215 −

429
218 +

5241
221 −

26283
224 +

338835
227 − 2771097

230 + etc.

Collect the four initial terms into one and put B = 153
212 + 843

220 + C while

C =
5241
221 −

26283
224 + etc.

and actually summing some terms it will approximately be C = 15645
224 − 60417

230 .
Therefore, from these the sum of the series will finally be concluded to be
S = 0.40082055, which can nevertheless only be considered to be accurate
hardly further than to three or four digits because of the divergence of the
series; it is nevertheless certainly smaller than the correct value. For, in another
paper I found this sum to be = 0.4036524077, where not even the last digit
deviates from the true value.
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§11 But this transformation is especially useful for the transformation of an
already but slowly converging series into others which converge a lot more
rapidly. Since indeed the following terms are smaller than the preceding ones,
the first differences become negative; therefore, in the following the nature of
the sign is carefully to be taken into account.

I. Let this series be propounded

S = 1− 1
2
+

1
3
− 1

4
+

1
5
− 1

6
+ etc.

Diff. I − 1
2

, − 1
2 · 3, − 1

3 · 4, − 1
4 · 5,

1
5 · 6 etc.

Diff. II +
1
3

,
2

2 · 3 · 4,
2

3 · 4 · 5,
2

4 · 5 · 6 etc.

Diff. III − 1
4

, − 2 · 3
2 · 3 · 4 · 5, − 2 · 3

3 · 4 · 5 · 6 etc.

Diff. IV +
1
5

etc.

etc.

Therefore, it will be

S =
1
2
+

1
2 · 4 +

1
3 · 8 +

1
4 · 16

+
1

5 · 32
+ etc.;

but we already showed in the Introductio that both series exhibit the hyperbolic
logarithm of two.

II. Let this series for the circle be propounded, i.e.

S = 1− 1
3
+

1
5
− 1

7
+

1
9
− 1

11
+ etc.
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Diff. I − 2
1 · 3, − 2

3 · 5, − 2
5 · 7, − 2

7 · 9, − 2
9 · 11

etc.

Diff. II +
2 · 4

1 · 3 · 5,
2 · 4

3 · 5 · 7,
2 · 4

5 · 7 · 9,
2 · 4

7 · 9 · 11
etc.

Diff. III − 2 · 4 · 6
1 · 3 · 5 · 7,

2 · 4 · 6
3 · 5 · 7 · 9 etc.

Therefore, the sum of the series will also be

S =
1
2
+

1
3 · 2 +

1 · 2
3 · 5 · 2 +

1 · 2 · 3
3 · 5 · 7 · 2 + etc.

or

2S = 1 +
1
3
+

1 · 2
3 · 5 +

1 · 2 · 3
3 · 5 · 7 +

1 · 2 · 3 · 4
3 · 5 · 7 · 9 + etc.

III. Let the value of this infinite series be in question

S = log 2− log 3 + log 4− log 5 + log 6− log 7 + log 8− log 9 + etc.

Since the differences become too irregular at the beginning, let us actually
sum the terms up to log 10 using tables, the value of which sum will be found
to be = −0.3911005, and it will be

S = −0.3911005 + log 10− log 11 + log 12− log 13 + log 14− log 15 + etc.

Take those logarithms from tables and look for their differences this way:
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Diff. I Diff. II Diff. III Diff. IV Diff. V

log 10 = 1.0000000 + − + − +

log 11 = 1.0413927 413927

36042

log 12 = 1.0791812 377885 5779

30263 1292

log 13 = 1.1139434 347622 4487 368

25776 924

log 14 = 1.1461280 321846 3563

22213

log 15 = 1.1760913 299633

From these one finds

log 10− log 11 + log 12− log 13 + etc.

=
1.0000000

2
− 413927

4
− 36042

8
− 5779

16
− 1292

32
− 368

64
= 0.4891606.

Therefore, the value of the propounded series will be

S = log 2− log 3 + log 4− log 5 + etc. = 0.0980601,

to which logarithm the number 1.253315 corresponds.

§12 As we obtained these transformations by substituting the fraction y
1±y

for x in the series, so innumerable other transformations will result, if other
functions of y are substituted for x. Let again this series be propounded

S = ax + bx2 + cx3 + dx4 + ex5 + f x6 + etc.

and put x = y(1− y), having done which the following series will result
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S = ay − ayy

+ byy − 2by3 + by4

+ cy3 − 3cy4 + 3cy5 − cy6

+ dy4 − 4dy5 + 6dy6

+ ey5 − 5ey6

+ f y6 etc.

Therefore, if the one of these series was summable, at the same time the sum
of the other will be known. Hence, if one puts

S = x + x2 + x3 + x4 + x5 + etc. =
x

1− x
,

it will be

S = y− y3 − y4 + y6 + y7 − y9 − y10 + etc.

The sum of this series will therefore also be = y−yy
1−y+yy .

§13 If the one series terminates anywhere, the sum of the other can be
exhibited explicitly. Let us put a = 1 and that in the found series all terms
after the first vanish, so that S = y; hence, because of x = y− yy, the sum of

the first will be = 1
2 −

√
1
4 − x. But, because of a = 1, it will be
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b = 1 =
1
4
· 22

c = 2 =
1 · 3
4 · 6 · 2

4

d = 5 =
1 · 3 · 5
4 · 6 · 8 · 2

6

e = 14 =
1 · 3 · 5 · 7
4 · 6 · 8 · 10

· 28

f = 42 =
1 · 3 · 5 · 7 · 9

4 · 6 · 8 · 10 · 12
· 210

g = 132 =
1 · 3 · 5 · 7 · 9 · 11

4 · 6 · 8 · 10 · 12 · 14
· 212

etc.,

whence the first series will go over into this one

S =
1
2
−

√
1
4
− x = x + x2 + 2x3 + 5x4 + 14x5 + 42x6 + 132x7 + etc.,

which same series is found, if the surdic quantity
√

1
4 − x is expanded into a

series and is subtracted from 1
2 .

§14 For the transformation to extend further, let us put x = y(1 + ny)ν and
the propounded series

S = ax + bx2 + cx3 + dx4 + ex5 + etc.

will be transformed into the following
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S = ay +
ν

1
nay2 +

ν(ν− 1)
1 · 2 n2ay3 +

ν(ν− 1)(ν− 2)
1 · 2 · 3 n3ay4 +

ν(ν− 1)(ν− 2)(ν− 3)
1 · 2 · 3 · 4 n4ay5

+ by2 +
2ν

1
nby3 +

2ν(2ν− 1)
1 · 2 n2by4 +

2ν(2ν− 1)(2ν− 2)
1 · 2 · 3 n3by5

+ cy3 +
3ν

1
ncy4 +

3ν(3ν− 1)
1 · 2 n2cy5

+ dy4 +
4ν

1
ndy5

etc.

Therefore, if the sum of this series was known, one will at the same time
also have the sum of the first one and vice versa. Since n and ν can be taken
arbitrarily, from one summable series innumerable other summable ones can
be found.

§15 One can also do transformations of such a kind that the sum of the
found series becomes irrational in the following way.

Let this series be propounded

S = ax + bx3 + cx5 + dx7 + ex9 + f x11 + etc.;

it will be

Sx = ax2 + bx4 + cx6 + dx8 + ex10 + f x12 + etc.

Now, put

x =
y√

1− nyy
;

it will be xx = y2

1−nyy and the propounded series will be transformed into this
one
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Sy√
1− nyy

= ay2 + nay4 + n2ay6 + n3ay8 + n4ay10 + etc.

+ by4 + 2nby6 + 3n2by8 + 4n3by10 + etc.

+ cy6 + 3ncy8 + 6n2cy10 + etc.

+ dy8 + 4ndy10 + etc.

+ ey10 + etc.

etc.

Therefore, if the sum S was known from the first series, one will at the same
time have the sum of the following series

S√
1− nyy

= ay+(na+ b)y3 +(n2a+ 2nb+ c)y5 +(n3a+ 3n2b+ 3nc+ d)y7 + etc.

§16 If one takes n = −1, the coefficients of this series will be the iterated
differences of a from the series a, b, c, d etc.; but if in the propounded series the
signs alternate, the coefficients will be these differences for n = 1. Therefore,
let ∆a, ∆2a, ∆3a, ∆4a etc. denote the first, second, third etc. differences of a of
the series of the numbers a, b, c, d, e, f etc. And if it was

S = ax + bx3 + cx5 + dx7 + ex9 + etc.,

having put x = y√
1+yy

, it will be

S√
1 + yy

= ay + ∆a · y3 + ∆2a · y5 + ∆3a · y7 + etc.

But if it was

S = ax− bx3 + cx5 − dx7 + ex9 − etc.

and one puts x = y√
1−yy

, it will be

S√
1− yy

= ay− ∆a · y3 + ∆2a · y5 − ∆3a · y7 + etc.
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Therefore, if the series a, b, c, d, e etc. finally leads to constant differences, both
series can be summed explicitly; but this summation also follows from the
preceding paragraphs.

§17 Let us put that the coefficients a, b, c, d etc. constitute this series

1,
1
3

,
1
5

,
1
7

,
1
9

etc.

and, as we already saw above [§ 11, II.], it will be

a = 1, ∆a = −2
3

, ∆2a =
2 · 4
3 · 5, ∆3a = −2 · 4 · 6

3 · 5 · 7 etc.,

whence we will sum the following two series.

I. Let S = x + 1
3 x3 + 1

5 x5 + 1
7 x7 + etc.; it will be S = 1

2 log 1+x
1−x . Now, having

put x = y√
1+yy

, it will be

S =
1
2

log

√
1 + yy + y√
1 + yy− y

= log(
√

1 + yy + y),

whence it will be

log(
√

1 + yy + y)√
1 + yy

= y− 2
3

y3 +
2 · 4
3 · 5y5 − 2 · 4 · 6

3 · 5 · 7y7 + etc.

II. Let S = x− 1
3 x3 + 1

5 x5 − 1
7 x7 + etc.; it will be S = arctan x. Now, having

put x = y√
1−yy

, it will be

S = arctan
y√

1− yy
= arcsin y = arccos

√
1− yy.

Therefore, one will obtain this summation

arcsin y√
1− yy

= y +
2
3

y3 +
2 · 4
3 · 5y5 +

2 · 4 · 6
3 · 5 · 7y7 + etc.

§18 One can also substitute transcendental functions of y for x and can
discover other summations more difficult to find this way; but nevertheless,
for the new series to not become too complex, one has to pick functions whose
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powers can easily be exhibited, as it is the case for the exponential quantities
ey. Therefore, having propounded this series

S = ax + bx2 + cx3 + dx4 + ex5 + f x6 + etc.,

put x = enyy, where e denotes the number whose hyperbolic logarithm is = 1;
it will be x2 = e2nyy2, x3 = e3nyy3 etc. Indeed, in general, as it is known,

ez = 1 + z +
z2

1 · 2 +
z3

1 · 2 · 3 +
z4

1 · 2 · 3 · 4 + etc.

Therefore, the propounded series will be transformed into this one

S = ay + 1nay2 +
1
2

n2ay3 +
1
6

n3ay4 +
1

24
n4ay5 + etc.

+ by2 +
2
1

nby3 +
4
2

n2by4 +
8
6

n3by5 + etc.

+ cy3 +
3
1

ncy4 +
9
2

n2cy5 + etc.

+ dy4 +
4
1

ndy5 + etc.

+ ey5 + etc.

etc.

I. Let the geometric series be propounded, i.e. S = x + x2 + x3 + x4 + x5 +

etc.; it will be S = x
1−x . Now, put n = −1 so that x = e−yy and S = e−yy

1−e−yy =
y

ey−y ; one will find this sum

y
ey − y

= y− 1
2

y3 − 1
6

y4 +
5
24

y5 +
19
120

y6 − etc.,

the law of which series is not recognized1.

1By this Euler means that it is not possible to see an explicit formula for the general coefficient
of this power series.
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II. In the other series, let all terms except for the first be = 0; it will be

b = −na, c =
3
2

n2a, d = −8
3

n3a, e =
125
24

n4a, f = −54
5

n5a etc.

Because therefore the sum is S = ay and x = yeny, it will be

y = x− nx2 +
3
2

n2x3 − 8
3

n3x4 +
125
24

n4x5 − 54
5

n5x6 + etc.

Since in these series the structure of the progression is not obvious, the
summations deduced from this substitution have hardly any use. But the
transformations derived from the substitution x = y

1±y , which not only yield
extraordinary summations but also appropriate ways to approximate the sums
of series, stand out especially. Therefore, having mentioned these things in
advance without resorting to differential calculus, we want to proceed to show
the use of this calculus in the doctrine of series.
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